B.E. Sem V Mechanical Engineering Subject :- Fluid Power Engineering Gujarat University Question Bank

1.	Write short note on Hydraulic ram
2.	Write short note on Hydraulic Accumulator
3.	Write short note on Hydraulic Press
4.	Explain with neat sketch governing mechanism of Francis Turbine.
5.	With neat sketch explain construction and working of hydraulic crane.
6.	Explain how hydraulic turbines are classified.
7.	Describe principle construction and working of centrifugal compressor.
8.	Why governing of water turbine is required? Explain governing of any one hydraulic turbine with neat sketch.
9.	Enlist the various types of impeller used in centrifugal pump and explain any one
_	from it with a neat sketch.
10.	A tank, which is free to move, is provided with an orifice on side, through which jet
	of water is coming out. Obtain an equation for work done per sec on tank and
	efficiency of propulsion.
11.	Explain (i) minimum starting speed of centrifugal pump and (ii) cavitation in
	centrifugal pump.
12.	Explain Hydraulic Power Plant with neat sketch
13.	With neat sketch explain construction and working of hydraulic torque convertor.
14.	Write short notes on: Hydraulic intensifier
15.	With usual notations derive Darcy-Weisbach expression for calculating head loss
	due to friction in a pipe.
16.	State function of draft tube and explain with neat sketch different types of draft
	tubes.
17.	Explain following terms: Net positive suction head, Priming, Cavitation in pump
18.	Prove that head loss due to friction is equal to one third of total head inlet for maximum power transmission through nozzle.
19.	Show that in case of jet striking the flat plates mounted on wheel, the efficiency will
	be maximum when the tangential velocity of wheel is half of the jet.
20.	Explain the following terms with reference to water turbines. Give expression of
	each efficiencies.
04	(1) Hydraulic efficiency (2) Mechanical efficiency and (3) Overall efficiency
21.	Enlist the various types of impeller used in centifugal pump and explain any one
22	Derive on expression for the entimum value of the interession pressure in a two
<i>∠</i> ∠.	stage reciprocating air compressor for perfect inter cooling condition
22	Give classification of Reciprocating nump. Draw peat sketch of single acting
20.	reciprocating pump
24	Explain the phenomenon of water hammer. Obtain an expression for the rise of
	pressure when the flowing water in a pipe is brought to rest by closing the valve
	gradually.

25.	How will you obtain an expression for the minimum speed for starting of a centrifugal pump?
26.	Explain the following terms : (1) Major losses (2) Minor losses and (3) Equivalent
27	pipe Compare Reciprocating nump with Centrifugal nump
27.	With usual notations derive an expression for head loss due to sudden
20.	enlargement in pipe.
29.	Sketch and describe a modern method of regulation to maintain constant speed for
	Pelton turbine.
30.	A jet of water moving with velocity 22m/s impinges on a curved vane at the one end
	tangentially. The jet leaves the vane at an angle of 120° to the direction of motion
	of the vane. The velocity of vane is 10m/s and angle of nozzle is 20°. Determine
	I. Vane angle at inlet and outlet,
21	II. Work done per second per init mass of water.
51.	blades are curved backward and make an angle of 30° to the tangent at the
	periphery. Calculate the power required if the velocity of flow at outlet is 20m/s
	Determine the head to which water can be lifted
	when a diffuser casing reduces the outlet velocity to 60%.
32.	A water jet of 80 mm diameter impinges on a curved vane at its centre and is
	deflected through an angle of 1400. The water flowrate is 80 lit/s and vane moves
	with velocity of 5 m/s in direction of jet. Neglecting friction, find (i) component of
	force in direction of motion and (ii) the
	power developed by vane and its efficiency.
33.	A single stage, single acting reciprocating air compressor compresses 7x 10-3 m3
	process is 1.3 and mechanical efficiency is 82%. Neglecting effect of clearance
	determine power required to drive
	the compressor and show the process on P-V diagram.
34.	A pipe line 300 mm dia. and 3200 m long is used to pump up 50 kg/s of an oil
	whose density is 950 kg/m3 and whose kinematic viscosity is 2.1 stokes. The
	centre of the pipe line at the upper end is 40 m above than that at the lower end.
	The discharge at the upper and is atmospheric. Find the pressure at the lower end
35.	A jet of water impinges on a symmetrically curved vane at its center. The velocity of
	the jet is 60 m/s and the diameter 120 mm. the jet is deflected through an angle of
	120° Calculate the force on the vane if the vane is fixed. Also determine the force if
	nower and efficiency?
36	A jet of water moving with a velocity of 27m/s impinges tangentially to a single
00.	curved blade which is moving in the direction of jet with a speed of 12m/s. Jet is
	deflected through 45°. If the friction reduces the relative velocity by 20% calculate
	the angle through which the jet will leave the blade, work done /kg of water and
	efficiency.

37.	A Pelton turbine is to be designed for following specifications:
	shaft power=11770KW, Head=380m, speed=750rpm, overall
	efficiency=86%, jet diameter not to exceed one sixth of wheel
	diameter, Determine the wheel diameter, number of jets required,
	diameter of jet. assume Cv=0.985, v=0.45(2gH)0.5
38.	The diameter of a horizontal pipe which is 300mm is suddenly enlarged to 600mm.
	The rate of flow of water through this pipe is 0.4 m3/sec. If the intensity of pressure
	in smaller pipe is 125 KN/m2, determine loss of head due to sudden enlargement,
	intensity of pressure in large pipe, power loss due to enlargement.
39.	A jet delivers water at the rate of 60 liters per second with velocity 30 m/s. The jet
	strikes tangentially on the vane moving in the direction of the jet with the velocity of
	15 m/s. The vane is so shaped that if stationary it would deflect the jet through an
	angle 50°. Calculate:
	(1) angle made by absolute velocity at outlet and (2) work done per sec.
40.	Francis turbine designed to develop 160 kw working under a head 10 m and
	running at 200 rpm. The hydraulic losses in turbine are 15% of available energy.
	The overall efficiency of turbine is 80%. Assume flow ratio=0.94 and speed
	ratio=0.25. Calculate: (1) guide blade angle and
	runner vane angle at inlet and (2) diameter and width at inlet.